• Skip to primary navigation
  • Skip to main content
  • Skip to footer
AddUp

AddUp

  • Machines
    • Machines
      • PBF
        • FormUp 350
        • FormUp 350 Evolution
      • DED
        • Modulo 400
        • Magic 800
      • Software
        • AddUp Dashboards
      • Why AddUp
        • Customer Journey
        • Certifications
  • Service
    • Service
      • Consulting
      • Training
      • AddUp Academy
  • Industries
    • Industries
      • Medical
      • Tooling & Molding
      • Aerospace & Defense
      • Other
  • Applications
  • Resources
    • Resources
      • Guide to Metal 3D Printing
      • Blog
      • Videos
      • Events
      • Materials
      • Downloads
      • AddUp Academy
      • Customer Portal
  • Company
    • Company
      • News & Press
      • Partners
      • Careers
      • Company Locations
      • Supplier Portal
  • Contact
        • Search

  • EN
    • FR
    • DE

Industrial Successes

September 29, 2023 by

INDUSTRY

Medical

CHALLENGE

As the world around us becomes more personalized, medicine is no different. To keep up, off the shelf solutions will become obsolete and personalized solutions will become the norm. How will the industry handle this customized changed from a manufacturing standpoint?

KEY BENEFITS
  • a net savings of US$736 per operation when using additively manufactured PSI (1)
  • a decrease in blood loss (of 44.72 mL) when using additively manufactured PSI (2)
  • a decrease in hospital stay (0.39-day decrease) (2)
icon addup
Custom Shape
icon addup
Performance
icon addup
Integrated Features

This case study highlights the advantages of using additive manufacturing (AM) for Patient Specific Implants (PSI) in the orthopedic industry. By shifting from traditional manufacturing to AM, orthopedic OEMs can meet the demand for personalized medicine and tailored solutions for patients.

History

Before the invention of industrial 3D Printing, all standard-line and even some Patient Specific Implants (PSI) were traditionally manufactured. Typically, this included manufacturing methods like casting and forging and CNC machining out of bar stock. These implants must be machined from a single piece of material (most likely titanium or stainless steel). This is a particularly expensive and technically sophisticated process. This leads to the PSI being costly and with an increased lead time.

When using AM, there are many ways that these devices can be cleared through the FDA. The easiest and most used is a 510k. This verifies a “build envelope” and ensure the PSI is functionally equivalent or better that the standard line implant. Another option is a Custom Device Exemption. This is an option that limits the manufacturing of a particular device type to 5 units per year(3). Humanitarian Use Devices (HUD) are medical devices intended to benefit patients in the treatment or diagnosis of a disease or condition that affects or is manifested in not more than 8,000 individuals in the United States per year. A Humanitarian Device Exemption (HDE) is a subset of the HUD. This type of PSI is exempt from the effectiveness requirements of Sections 514 and 515 of the FD&C Act and is subject to certain profit and use restrictions(4). These are the plethora of ways that OEMs and Manufacturers can help get the PSI into the hands of the surgeon.

Challenges

Orthopedic OEMs have been manufacturing standard line implants for mostly the same way since the 1970s. A shift to additively manufactured PSIs will change how surgeons treat their patients and will change the industry as we know it.

Conventional manufacturing, whether it be subtractive or casting and forging, is not inherently designed to make customized solutions. Therefore, the largest challenge will be convincing the OEMs and implant manufactures to change their manufacturing processes to match what the market is demanding. The market is demanding personalized medicine, and this will come in the form of PSI in the orthopedic industry.

The patients will need to work with surgeons to ensure that they receive the most tailored solution to their condition. This will also require cooperation from the hospitals and insurance companies to provide support for this industrial change. PSI can be cheaper and more beneficial to the patient, but as the technological shift occurs, PSI will most likely be more expensive. It will be up to the user, patient and surgeon, to vote with their wallet and the equipment they use to enable this technology to flourish.

SOLUTIONS

AddUp is uniquely equipped to help the industry shift from standard line implants to patient specific implants.

The FormUp 350 is built for serial production from the ground up. It can handle varying different complex geometries from fine detailed lattice that promotes osteointegration to a large semipelvis. These types of cases can all be built on a single build allowing for greater efficiency and throughput.

The modular build plate helps the manufacturer to adapt to surgical cases of any size and shape. This allows for greater efficiencies from each build. Efficiency will be key to the shift from standard product line to patient specific implants happening. As the population ages and a larger number of people live longer, there will be more and more surgeries. If medicine continues down the path of personalization, the FormUp 350 will be there to meet the demand of serial production of patient specific implants.

Lot traceability is inherently enhanced, and implants can get on to their next process faster without the need to wait on the remainder of the build. This means that each surgical case can go its own way closer to the beginning of the supply chain. A wider range of surgical implants can be produced on the same build since each implant is not subject to as many of the same processes. These further decreases lead times as PSI are especially sensitive to the amount of time between the CT scan to the surgery. Any amount of time between CT scan to surgery allows the bone’s anatomy to change as the patient continues living their day-to-day life. The less amount of time from scan to surgery, the better possible outcome for the patient; giving surgeon’s confidence that they have the correct tools for the job to best improve the patient’s life.

The Results

Using a Total Knee Arthroplasty (TKA) example, using a PSI manufactured via AM results in a net savings of $736 when compared to traditionally manufactured implants, thanks to a shorter operating time and fewer instrument trays required.(1) Patients and hospitals also reap the benefit of shorter operating room times, reduced by 20.4 min(1) when compared to traditionally manufactured implants.

It’s also been proven that a significant difference in blood loss occurs (decreased by 44.72 mL)(2) Lastly, a decreased hospital stay (0.39 day decrease) provides a significant benefit to both the hospital system and the patient. (2)

Using additively manufactured PSIs such as knee femoral and tibial components or acetabular hip cups, provide improved accuracy of biomechanical implant alignment(1), resulting in improved patient care and better patient outcomes.

References

1. Haglin, J.M., Eltorai, A.E.M., Gil, J.A., Marcaccio, S.E., Botero-Hincapie, J. and Daniels, A.H. (2016), Patient Specific Orthopaedic Implants. Orthop Surg, 8: 417- 424. https://doi.org/10.1111/os.12282

2. Schwarzkopf, Ran, et al. “Surgical and functional outcomes in patients undergoing total knee replacement with patient-specific implants compared with “off-the-shelf” implants.” Orthopaedic journal of sports medicine
3.7 (2015): 2325967115590379

3. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/custom-device-exemption

4. https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/humanitarian-device-exemption

Learn more about 3D Metal Printing for Custom Medical Implants:

September 29, 2023 by

INDUSTRY

Tooling & Molding

CHALLENGE

Increase the longevity and performance of an extrusion die while increasing the flexibility to produce dies of various sizes when additively manufactured.

KEY BENEFITS
  • Die extrusion rate for end-use product increased by 25%
  • Maximum temperature is 20°C lower on the new die due to conformal cooling
  • 6x Wear Performance: 12 weeks > 2 weeks (a 10-week improvement)
icon addup
Conformal Cooling
icon addup
Increased Productivity
icon addup
Increased Lifespan

This study explores the use of additive manufacturing, specifically Powder Bed Fusion (PBF), to create extrusion dies with improved performance and cooling capabilities.

History

Extrusion is a popular manufacturing method for parts with a constant profile. A couple examples from the world of plastics are PVC pipe and wiper blades, but metals and composites can be extruded as well. The material feedstock is forced through the profile of the die to transform it into the shape of the final part. In plastics extrusion, it is commonplace to machine the extrusion die out of aluminum. . Due to the design constraints of traditional machining, the extrusion die is often larger and bulkier than necessary, and lacks any sort of advanced cooling channels.

The simple geometry causes poor cooling performance, as the coolant cannot run near the inner profile of the die, making it way less efficient. It is also costly and time consuming to create different programs, jigs, and fixtures for different sized parts. Creating extrusion dies in specialty sizes would be too costly without the flexibility provided by additive manufacturing.

Challenges

Traditional manufacturing of extrusion dies is limited to materials that easy to machine. This material restriction conflicts with attempts to optimize performance of the die, especially when it comes to wear properties and tool life. The challenge is to utilize additive manufacturing (AM) to create a die made from a material that improves its durability and increases how long it lasts in production. The die must also utilize conformal cooling to improve thermal performance. Lastly, the overall cost of manufacturing the die must be decreased to allow for design changes to be implemented across a variety of manufacturing lines and machines.

SOLUTIONS

Powder Bed Fusion can print any 2D profile, which allows for a perfect match of any shape that may be extruded. Because PBF does not need any setup tooling, there is much more freedom with different quantities and differently shaped parts, perfect for specialty sizes and new extrusion dies without any additional investment. Extrusion dies can also be made from fewer parts, reducing spare parts burden and simplifying the manufacturing process.

Another added benefit from the geometric capabilities of AM is conformal cooling. Intricate cooling channels, which are impossible to machine, are implemented onto the contour of the part during printing. The optimal design of these channels allows for uniform temperature control leading to improved cooling and performance. Furthermore, the part is printed in Inconel 718, which is a nickel based alloy with high wear and corrosion resistance that can operate in high temperatures.

The Results

The new extrusion die created through AM stayed of 20°C cooler than a die made using traditional manufacturing methods due to the improved conformal cooling design. The lower temperature allowed for the product to be extruded through the die 25% faster, meaning a huge productivity boost without sacrificing any quality. Thermally, there is room to increase the extrusion speed, but other equipment on the line is now the bottleneck instead of the die itself. The new die also lasted six times longer than the previous one at 12 weeks rather than 2 weeks, even while operating at the increased speed.

Powder Bed Fusion has proven to be a valuable tool, poised to support the extrusion industry for a large number of potential applications.

chart addup

September 29, 2023 by

INDUSTRY

Automotive

CHALLENGE

Decrease production time and cost while improving performance when compared to traditional manufacturing by optimizing scan strategy.

KEY BENEFITS
  • Optimized scan strategy for better surface finish for Impeller geometries
  • Proved PBF as a viable option for Impeller’s in the automotive industry in terms of both cost and performance
  • Compared test and inspection methods for geometric and density uniformity of additive versus traditional parts
icon addup
Increased Productivity

This case study explores the feasibility of using additive manufacturing, specifically the Form Up 350 PBF machine, to produce over 100,000 Impeller wheels annually for Ford, replacing traditional machining techniques.

History

Ford uses traditional methods to manufacture over 100,000 Impeller wheels per year. Ford, Oak Ridge National Labs, and AddUp conducted a study to determine the feasibility of producing the impeller wheels through additive manufacturing using the FormUp 350.

Ford would leverage their extensive history of over a century of automotive experience. Oak Ridge National Labs would optimize the scan strategy and the DOE of contour passes. AddUp brings the expertise in design, manufacturing, and automation for large scale production using their industrial FormUp 350 PBF machine.

Challenges

Ford currently manufactures by utilizing traditional machining techniques to create their impeller wheels. The challenge proposed to AddUp was to investigate the performance of PBF technology as a replacement to mass manufacture these parts. The goal was to decrease production time and cost while improving performance when compared to traditional manufacturing. Thus, a single contour pass is sufficient given a position beyond the hatch lines to remove hatch patterning. Tolerances were also sufficient from the printer.

The result should be to effectively create 100,000 Impellers through additive manufacturing and create an optimal printing strategy for performance, leveraging the design freedom from AM while optimizing the scanning strategy for surface finish and productivity.

SOLUTIONS

The original test part was made from maraging steel to test the feasibility of geometries which resulted in demonstrating the viability of additively manufacturing a complete turbo wheel without the need for supporting low-angled features. The surface finish still had to be optimized and geometric tolerances in the as-printed conditions as close to the CAD model as possible. L-PBF often uses a contour followed by infill melt strategy to obtain parts with superior surface finish. If an insufficient overlap is used between the contour and infill, it can result in porosity at the contour-infill interface thereby making the part susceptible to premature failure. The part was tested with 1 contour pass and 5 contour passes. When melting with 5 contour passes, the surface had increased porosity compared to a single pass.

The Results

With the need for a rugged, heat resistant material, Inconel 718 was chosen. When printed with Inconel 718, a support structure on the bottom of the wheel was required. AddUp printed a simulation test build of 9 impeller wheels using Inconel 718. Following post processing, two wheels were selected to be balance tested.

chart addup
  • (a) Optical micrograph of single contour pass downskin

    (b) Optical micrograph of downskin using five contour passes. Although more contour passes may be useful, the position of the outermost contour drives surface finish as shown by partially melted particles clinging to the surface in.

     

     

     

     

Geometric tolerances measured from light-scanning of turbo wheels with the outer contour extending the following distance beyond CAD boundary:

  • (a) #08 at 36µm
  • (b) #11 at 11µm
  • (c) #13 at 61µm and
  • (d) #19 at 36µm but melted outer to inner.
PART NAMEIMPELLER
3D printer make and modelAddUp FormUp 350
Build Plate size350 x 350 mm2
Number of parts per batch25
Print time per batch32.28 hours
Material Cost estimate for Inconel 718$70/kg
Mass of part0.311 kg
Mass of support material0.05 kg
Depowder time per batch0.5 hours
Support Removal time per batch30 hours
Post processing time per batch (heat treatment)12 hours
Annual volume required100,000 units a year

October 17, 2019 by

Improving Injection Mold Hotspots For Optimal Cooling Capabilities With Additive Manufacturing

INDUSTRY

Tooling & Molding

CHALLENGE

Improving injection mold hotspots for optimal cooling capabilities with additive manufacturing.

icon addup
INCREASED PRODUCTIVITY
icon addup
REDUCED MANUFACTURING TIME
icon addup
CONFORMAL COOLING

History

As a leading German pattern and mold maker, Siebenwurst offers their customers more than just a good mold. They combine tradition with high-tech and offer intelligent and innovative complete solutions.

For more than a century, Siebenwurst has stood for the highest quality in model and mold making and supplies perfect tools from the design model to series production. Modern methods and manufacturing technologies guarantee the fastest possible tool production. The first AM tooling applications have been developed and evaluated with AddUp in the last two years.

Challenge

The conventional design of cooling systems reaches its limits with critical molded parts due to the complexity of the geometry. Therefore, it is difficult with conventional internal cooling to cool all contour sections sufficiently and uniformly. This can lead to an inhomogeneous temperature distribution in the application and hot spots can develop in the part.

Hot spots are a critical factor in determining both cycle time and quality in production, and must be avoided for good results. If molds are insufficiently tempered and the same quality is desired, the cycle time increases and the mold inevitably becomes less productive.

Solution

Powder Bed Fusion allows for new design freedoms that conventional machining could never touch. Molds can be built with parallel cooling circuits that follow the contours of the mold surface, no matter the shape of the final part. This new style of cooling circuits is known as Conformal Cooling.

Conformal cooling design makes it possible to reduce the cross-sections of the channels. This is possible because several channels can run in parallel from the inlet to the outlet , thus mapping the mold surface homogeneously. The channels can easily be designed to fit perfectly into the complex zones of the mold. The durability and manufacturability of the molds should be comparable to the conventional method, if not better.

While the additive production of the tool itself will sometimes be more expensive than if manufactured via other methods, that additional cost will be recouped in final part production due to the increased tool productivity and longevity.

Process

In order to extract the maximum benefits 3D Printing can provide, the Slide Valve had to be redesigned, and the CAD file must be modified. The new design incorporates a system of balanced cooling circuits with individual channels laid out in parallel. This approach allows coolant to flow closer to any features that need to be cooled, no matter their shape. Cooling rates will be faster, but also more homogenous throughout the entire part because the channels are a consistent distance from those features. In other words, no more hot spots.

The Additive Manufacturing workflow also requires some adjustments to the CAD model. Any references and clamping surfaces to be used in downstream machining processes need to be incorporated into the model. Those features may need to be adjusted when the part design changes.  

Production

The slide head inserts are printed with the following machine configuration:

  • FormUp 350 with 4 lasers
  • Tool steel 1.2709/Maragins 18Ni300 (46-50HRC)
  • Fine Powder (5-25µm)
  • Roller Recoating technology

Different slider shapes are needed for one tool, all 8 of which fit on one FormUp build platform (350x350mm) with room to spare for testing specimens. Thus, thanks to the large  build plate and 4 lasers, all inserts can be printed in one production job. Completing all necessary parts on one build creates huge savings in both time and costs associated with starting up the printer.

The roller recoating technology enables the use of  fine powder, which will clump when paired with a more commonly seen blade or scraper recoater. The use of a roller is unique to AddUp.

Roller recoating brings the advantage of achieving the best surface and contour qualities through higher compaction and uniform distribution of the individual powder layers. For this application, Siebenwurst was able to cut back significantly on their surface finishing processes, leading to 42% cost savings in that area.

For this part, the contour quality is another emphasis, with the goal of keeping the post-processing to a minimum with as little geometric deviation as possible.

The bounding box of the part is 100x65x50 mm3 and the maximum deviation from the contour definition is 0.12mm. Siebenwurst carried out the complete reworking of the gate valves and the sampling of the plastic parts. The previous dimensioning and finish machining worked perfectly and the sampling could be carried out in the original tool without any problems.

The following pictures show the generated surface and precision of the printed contour.


Results

Early trials show the maximum temperature recorded at the insert dropping by 16°C, a clear mark of improvement and a sign that the hot spot was eliminated in the new design. The printed part held to the expected geometric tolerance and allowed for a significant reduction in surface finishing expenses. As the study continues, cycle time and tool longevity will be studied as well.

The success of this project inspired further cooperation between AddUp and Siebenwurst in the near future, and has opened the doors for Siebenwurst to pursue more AM applications.

Siebenwurst Door Handle
Siebenwurst Door Handle 2
  • Reduction of the slide valve temperature from 62°C to 46°C

  • Elimination of temperature hotspot in slide gate area

  • Surface finishing cost reduction of 42%

  • « Go to Previous Page
  • Page 1
  • Page 2
  • Page 3
AddUp SAS

13-33 Rue Verte
ZI de Ladoux, 63118 Cébazat
France

+33 (0)4 73 15 25 00
AddUp Inc

5101 Creek Rd,
Cincinnati, OH 45242
USA

+1 (513) 745-4510
AddUp GmbH

Campus-Boulevard 30
52074 Aachen
Germany

+49 241 4759 8581

Footer

  • Machines
    • PBF
      • FormUp 350
      • FormUp 350 Evolution
    • DED
      • Modulo 400
      • Magic 800
    • Software
      • AddUp Dashboards
    • Why AddUp
      • Customer Journey
      • Certifications
  • Service
    • Training
    • AddUp Academy
  • Industries
    • Medical
    • Aerospace & Defense
    • Tooling & Molding
    • Other Industries
  • Applications
  • Resources
    • Guide to Metal 3D Printing
    • Blog
    • Videos
    • Events
    • Materials
    • Downloads
    • AddUp Academy
    • Customer Portal
  • Company
    • News & Press
    • Partners
    • Careers
    • Supplier Portal
  • Contact

© 2025 AddUp. All Rights Reserved. Privacy Policy| Terms of Use| Legal Notice

Ask an addup expert