MATERIAL DATA SHEET

17-4 PH STAINLESS STEEL

The alloy chemical composition complies with UNS S17400 and AMS 5604

General Material and Process Specification

17-4 PH is a martensitic precipation hardening stainless steel wih Cr, Ni and Cu as major alloying elements. This material offers excellent mechanical properties when heat-treated. Due to its high strength and relatively good corrosion resistance, it is widely used in a variety of applications such as aerospace, medical, oil and gas, and food industries.

This data sheet specifies the expected mechanical properties and characteristics of this alloy when manufactured on a FormUp 350 system. All data is based on parts built with AddUp standard 60 μ m layer thickness parameters, using 15-45 μ m spherical powder.

Physical Properties	Results			
Density (%)¹	Typical 99.95			
Theoretical density (g/cm³)²	7.8			

¹ Relative density analysis was carried out using optical microscopy

Surface Roughness Ra 3,4,5	As-built	Bead blasted ⁵
Vertical surface	5 to 8	4 to 5

³ Depends on orientation and testing method

⁵ Surface treatment performed with glass blasting medium at 4 bar

	Thermal State				
Test Method	As-built	Heat-treated ⁷			
ASTM E8					
	-	1325±7			
	939±23	1306±16			
ASTM E8					
	-	1207±7			
	825±28	1192±17			
ASTM E8					
	-	14±1			
	18±1	15±1			
ASTM E8					
	-	42±2			
	66±3	52±2			
	ASTM E8 ASTM E8	Test Method As-built ASTM E8 - 939±23 ASTM E8 - 825±28 ASTM E8 - 18±1 ASTM E8			

Version: US-04012024-0330


² Values based on literature

⁴ Tested using optical profilometer, cutoff wavelength λc=2.5 mm

		Thermal State				
Mechanical Properties ⁶ (cont.)	Test Method	As-built	Heat-treated ⁷			
Modulus of Elasticity (GPa)	ASTM E8					
Horizontal direction (XY)		-	191±7			
Vertical direction (Z)		177±4	191±7			
Rockwell hardness (HRC)	ASTM E18					
Horizontal direction (XY)		25±8	44±5			
Vertical direction (Z)		30±3	43±3			

⁶ Tested at ambient temperature to ASTM E8. Machined before testing. Values based on a sample size of a minimum 9 across the build plate ⁷ Specimens were solution annealed at 1040°c for 1 hour then hardened at 480°C for 1 hour and air cooled to ambient temperature

Microstructures

Stress relieved

Generic Data⁸

Thermal and Electrical Properties	Results			
Thermal conductivity (W/mk) at 25°C	18 - 23			
Melting Range (°C)	1404 -1440			
Coefficient of thermal expansion (µm/(m .°C)) at 21 to 93°C	10.8			

⁸ Based on the literature data

Chemical Composition9

Element	Fe	Cr	Ni	Cu	Si	Mn	Р	S	Nb+Ta	Other total
Weight (%)	Balance	15-17.5	3.0-5.0	3.0-5.0	≤1.0	≤1.0	≤0.04	≤0.03	0.15-0.45	≤ 0.10

⁹ Based on the manufacturer material datasheet

CONNECT WITH US

AddUp SAS 13-33 Rue Verte ZI de Ladoux, 63118 Cébazat France

+33 (0)4 73 15 25 00

AddUp Inc 5101 Creek Rd, Cincinnati, OH 45242

+1 (513) 745-4510

AddUp GmbH Campus-Boulevard 30 52074 Aachen Germany

+49 241 4759 8581

AddUp Solutions Pte. Ltd. 2 Cleantech Loop #04-06 JTC Launchpad @ Jurong Innovation District Singapore 637144

