MATERIAL DATA SHEET

MARAGING STEEL M300

The alloy chemical composition complies with DIN 1.6354

General Material and Process Specification

Maraging steel M300 is a low-carbon tool steel with Ni, Co and Mn as secondary intermetallic alloying elements. This material is easily heat-treatable and offers excellent hardness, strength and wear resistance. Due to its high hardness and wear resistance, it is widely used in automotive and industrial applications. Injection molding and die-cast inserts are some of the major applications.

This data sheet specifies the expected mechanical properties and characteristics of this alloy when manufactured on a FormUp 350 system. All data is based on parts built with AddUp standard 45 μm layer thickness parameters, using fine spherical powder.

Physical Properties	Results				
Density (%)¹	Typical 99.95				
Theoretical density (g/cm³)²	8.0				
1 Deleting describe an account of the last and account					

Relative density measured using optical microscopy

Surface Roughness Ra 3,4,5	As-built	Bead blasted ⁵
Vertical surface	2 to 5	1 to 3

- ³ Depends on orientation and testing method
- ⁴ Tested using optical profilometer, cutoff wavelength λc=2.5 mm
- ⁵ Surface treatment performed with glass blasting medium at 4 bar

		Thermal State			
Mechanical Properties ⁶	Test Method	Stress-relieved ⁷	Heat-treated ⁸	Heat-treated ⁹	
Tensile strength (MPa)	EN ISO 6892-1				
Horizontal direction (XY)		1543±80	1451±9	1786±68	
Vertical direction (Z)		1439±56	1453±66	1759±99	
Yield strength (MPa)	EN ISO 6892-1				
Horizontal direction (XY)		1431±104	1322±27	1712±65	
Vertical direction (Z)		1333±64	1332±70	1717±107	
Elongation at failure (%)	EN ISO 6892-1				
Horizontal direction (XY)		9±4	12±1	6±1	
Vertical direction (Z)		7±4	13±1	6±1	
Rockwell hardness (HRBC)	ISO 6508	-	43-46	50-52	

⁶ Tested at ambient temperature to ASTM E8. Machined before testing

² Values based on literature

⁷ Specimens were stress-relieved at 580°C for 4 hours in inert atmosphere

⁸ Specimens were hardened at 590°C for 4 hours in inert atmosphere and air cooled to ambient temperature

⁹ Specimens were hardened at 480°C for 2 hours in inert atmosphere and air cooled to ambient temperature

Generic Data¹⁰

Thermal and Electrical Properties	Results		
Thermal conductivity (W/mk) at 25°C	14.2 - 11.5		
Electrical Resistivity (Ωm) [x10-6]	0.17 - 0.49		
Melting Range (°C)	1430 - 1450		
Coefficient of thermal expansion (µm/(m .°C))	10.0 - 11.5		

¹⁰ Based on the literature data

Chemical Composition¹¹

Element	Fe	Ni	Со	Мо	Cr	Al	Mn, Si, Ti	P,S
Weight (%)	Balance	17.0-19.0	8.5-9.5	4.5-5.2	≤0.30	0.05-0.15	≤0.10	≤0.01

¹¹ Based on the manufacturer material datasheet

Learn about some of our other materials avaliable!

CONNECT WITH US

AddUp SAS 13-33 Rue Verte ZI de Ladoux, 63118 Cébazat France

+33 (0)4 73 15 25 00

AddUp Inc 5101 Creek Rd, Cincinnati, OH 45242 USA

+1 (513) 745-4510

AddUp GmbH Campus-Boulevard 30 52074 Aachen Germany

+49 241 4759 8581

AddUp Solutions Pte. Ltd. 2 Cleantech Loop #04-06 JTC Launchpad @ Jurong Innovation District Singapore 637144

+65 6909 9345

